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ABSTRACT 

On a metric minimal flow (X, a) which is a torus (K) extension of its largest 

almost periodic factor Z -- X/K, the following conditions are equivalent. 
(i) (X, a) is a nil-transformation of the form (N/r, a) where K is central 

in N and [N, N] C K. 
(ii) E(X), the enveloping group of (X, a) is a nilpotent group of class 

2. 
(iii) Any minimal subset fl of X • X is invariant under the diagonal 

action of K and the quotient ft/K -- Z~, is the largest almost 
periodic factor of ft. 

The enveloping groups of such flows are described and a corollary on co- 
cycles of the circle into itself is deduced. Finally general minimal nil- 
transformations of class two are shown to be of the form considered in 
condition (i) above (possibly with a different nilpotent group) and conse- 
quently we deduce that the class of minimal flows which are group factors 
of nil-transformations of class 2 is closed under factors. 

w I n t r o d u c t i o n  

In [F,2] H. Purstenberg identifies ergodic ni l- transformations T of  class two as the 

"characteristic family" for ergodic sums of the form ~ ~'~-=0N-1 T n f  T2,g T3,h.  

In a for thcoming work, with B. Weiss, they show that  in order  to s tudy  these 

ergodic sums for a general ergodic easure preserving t ransformation,  it is enough 

to consider factors of the form ( X , B , p , T ) ,  where X = Z x~ K ,  Z the largest 

Kronecker factor  of X ,  K a compact  metric abelian group,  ~ a measurable  cocycle 

of Z into g and T(z, k) = (z + r, ~(z)k) ,  ( r  is a generator  for the compact  
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monothetic group Z). Further analyzing these characteristic factors they show 

that a certain functional equation, Lesigne's equation, is satisfied. The final step 

in their analysis is to deduce from this equation the existence of a nilpotent 

topological group N of class 2 such that the characteristic factor (X, B, #, T) is 

measure theoretically isomorphic to the nil-transformation (N/F, a) where F is a 

closed subgroup and a E N. 

In [L], E. Lesigne shows that these ergodic sums in fact converge for such 

nil-transformations. On his way to prove this Lesigne shows, without explicitly 

stating it, that for a nil-transformation (X, a) of class 2 and any pair of points 

xl,x2 E X, the orbit closure of (xl,x2) in X x X is isomorphic to a sub-flow 

of the form X • K where K is a group rotation. This led Professor Fursten- 

berg to conjecture that this last property actually topologically characterizes 

nil-transformations of class 2. In this paper we prove a slightly restricted version 

of this conjecture and show that a third equivalent condition is that E(X), the 

enveloping group of the flow (X, a) is (as an abstract group) a nilpotent group 

of class 2. 

There are very few known explicit representations of enveloping semigroups 

(see [F,1], [N]). As a by-product of our main theorem we obtain an explicit 

representation for the enveloping groups of nil-transformations of class 2. (This 

includes as a special case Namioka's computation). We get as a special case of 

the main theorem a dynamical characterization of those functions ~, from the 

circle into itself, which with respect to an irrational rotation, are co-homologous 

to a character. Another consequence of the main theorem is that the class of 

minimal nilflows of order two and their group factors is closed under passage to 

factors. 

I am indebted to Prof. H. Furstenberg for many discussions and suggestions 

concerning these problems. I would like to thank M. Denker and the S.B.F. in 

Ghttingen for their hospitality where part of this work was done and S.C. Dani 

for helpful information. 

w Definitions and Statement of Results 

Let X be a compact metric space, 7~(X) denotes the group of self-homeomorphi- 

sms of X endowed with the topology of uniform convergence of homeomorphisms 

and their inverses. With this topology 7-((X) is a polish topological group. 

Let a be an element of 7-/(X) such that the corresponding transformation acts 
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minimally on X. We shall call the couple (X, a) a minimal flow. Let K C 7"/(X) 

be a compact commutative subgroup commuting with a. Thus each k E K is 

an automorphism of (X, a). Since such an automorphism has a fixed point if 

and only if it is the identity automorphism, we see that K acts freely on X. We 

further assume that the quotient map X ~ Z TM X / K  is the homomorphism 

of (X, a) onto its largest almost periodic factor. Choosing a point z0 E Z we 

can consider Z as a compact monothetic topological group with identity element 

z0. Fixing a point x0 E X with ~r(x0) = z0 we find that 7r(axo) = r E Z is a 

generator for Z. 

Our assumptions on the minimal flow (X, a) clearly imply that it is distal and 

we recall that the enveloping semigroup E = E(X,  a) of a distal flow is in fact a 

group. If (2 ,  ~) is the largest almost periodic factor of the flow (E, a) then the 

factor map E ~, 2 is a group homomorphism and we let E '  = ker ~'. (See [E] 

page 135 for the definition and properties of the group E~). 

For elements g,h of a group G we write [g, hi = ghg-lh -1 and let [G, G] be 

the subgroup generated by all elements of the form [g, hi. G is nilpotent of class 

2 if [G, G] is contained in the center of G. 

For x, x' E X,  5(x, x') denotes the orbit closure of (x, x') E X x X under a x a. 

We are now ready to state our main result. 

2.1 THEOREM: Suppose K is a torus (finite or infinite dimensional). The fop 

lowing conditions on (X, a) are equivalent: 

There ex/sts a closed nilpotent group of class 2, N C ~ ( X )  acting transi- 

tively on X, with a E N, K C N, K central in N and [N, N] C K,  and 

a co-compact closed subgroup F of N such that the nil-flow (N/F, a) is 

isomorphic to ( X,  a). 

9. E (as an abstract group) is nilpotent of class 2. 

K = E'. 

~, For every xl E X the subgroup 

= {(k, k): k e K} 

o[ K x K acts on f~ = 6(x0,xl)  and the quotient map ~ '~, f l / A K  = Z1 

is the largest almost periodic factor of  ~'l. 

When these conditions are satist~ed F is isomorphic to a subgroup of the group 

Homc(Z,K)  of continuous homomorphisms of Z into K. If  in addition I~, the 
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dual group of K, is finitely generated then r is a countable discrete subgroup of 

N and N itself is locally compact and a-compact. 

In the proof of Theorem 2.1 the assumption that K is a torus is used only 

at one point (Claim 6.3); what we actually use is the following assumption: For 

every commutative compact topological group G, closed subgroup H C G and a 

continuous homomorphism qo : H ~ K there exists a continuous homomorphism 

r : G ~ K such that r r H = ~. However this is equivalent to K being a torus. 

In the general case we introduce condition 

i* There exists a dosed nilpotent group of dass 2, N C caIH(X) acting tran- 

sitively on X ,  with a �9 N, K C N, K central in N and [N, N] C K, a 

dosed co-compact subgroup F of N and a compact commutative subgroup 

W C N satisfying wa = aw,u �9 W and W N K = {e}, such that the 

now (W \N /F ,  a) (i.e. the quotient of (N/F, a) under the group of auto- 

morphisms W) is isomorphic to ( X,  a). 

2.1" THEOREM: Conditions i*,2,3 and ~t on the fiow (X,a) are equivalent. 

We don't know of an example where condition i* occurs but (X, a) is not 

isomorphic to a nil-flow. See however Example 6.4. 

On the way of proving Theorem 2.1 we get the following result. For X = N/F  

satisfying condit ion' i  of Theorem 2.1 let z0 = F �9 X, let ~0 : N ~ K be 

defined by  o0(g) = [a, gl and let Horn(N, K)  be the group of all (not necessarily 

continuous) homomorphisms of N into K equipped with its (compact) pointwise 

convergence topology. Clearly ~o0 �9 Hom(N, K)  and we let 

= closure {qa~ : n  �9 Z}. 

2.2 THEOREM: Let E = closure {(anzo,~ ' )  E X • �9 : n fi Z}. Then the 

formulas 
(gr, r = ( (h)hgr, 

(gr,  ~ )-1 = ( ~(g )g-1 r,  ~-1) 

for (gr,  ~), (hr ,  r  �9 $, define a group structure on/~. Multiplication on the 

left by fi = (aF, ~0) is continuous and (E, fi) is isomorphic as a fiow and also as 

a group to (E, a). 

Specializing to flows on the 2-torus C x C = X where C = {e2~ri~ �9 R}, let 

a be an irrational number, r = e 2~ia, and let ~: C ~ C be a continuous map. 
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Define 

a : C x C - ~ C x C  

by = 

2.3 THEOREM: Suppose (X, a) is minimal and that the projection (X, a) ,r 

(C, r) onto the first coord/nate is the largest a/most periodic/'actor. Then ~ is co- 

homologous to one o[ the [unctions k0~,: C ~ C, 9~,(z) = z" (n E Z\{0}, k0 E 

C) / f f  the flow (X, a) satisfies the conditions of Theorem 2.1. 

The general minimal nil-flow (N/F, a) need not satisfy the condition [N, N] C 

K (see Example 6.5). However we have 

2.4 THEOREM: Let (X, a) be a minimal metric flow, N C I'I(X) a dosed sub- 

group, nilpotent of class 2 with a E N, which acts transitively on X.  Then 

1. closure [N, N] = t t  is a compact central subgroup of N. 

2. There exists a compact centra/subgroup K C H such that (X /K ,  a) = 

( Z, r) is the largest almost periodic/.actor o/.(X, a). 

3. There exists a dosed subgroup No C N with, a E No, K C No, [N0,N0] C 

K and No acts transitively on X;  i.e. (X, a) satisfies condition 1 o/'Theorem 

2.1. 

From this together with Theorem 2.1" we deduce 

2.5  THEOREM: The class of minimal flows of the form (X, a) = (W\N/F ,  a) 

where N is a nilpotent locally compact group of dass 2, F a dosed co-compact 

subgroup and W a compact abelian subgroup commuting with a is dosed under 

/'actors. 

In [P], W.A. Parry proves a much stronger theorem for nil-flows (N/r ,  a) of 

all classes. However, he assumes that N is connected. When N is a connected 

separable nilpotent locally compact group any compact subgroup W is central. 

It therefore follows that for such groups W \ N / P  = N/FW.  

In Section 3 we prove two key lemmas. In Section 4, Theorem 2.2 is proved as 

well as the implication i ==~ 2. In Section 5 first the implications 2 ==~ 3 ==~ 4 

are proved. The implication 4 ==~ J. turns out to be more delicate and we 

introduce an intermediary condition 4* which augments 4 and allows us to use 

Lemma 3.1 and prove 4" ==~ i. 

In Section 6 we come back to assumption 4 and show that it implies the 

existence of a group extension (X*,a*) of (X,a) which satisfies condition 4" 
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and is therefore (by Section 4) a nil-flow. This completes the proof of Theorem 

2.1". However to complete the proof of 4 ==~ 1, we need the further assumption 

that K is a torus. Using this assumption we are able to show that also (X, a) is 

a nil-flow. In Section 7 Theorem 2.3 is proved, and in the last section we prove 

Theorems 2.4 and 2.5. 

We use the notations T = R/7.  and C = {A �9 C :IAI = 1} for the circle group 

as convenient. 

w Two Lemmas 

3.1 LEMMA: Suppose (X,a)  satisfies condition ~i of Theorem 2.1 and suppose 

further that for every xl E X the following conditions are satisfied: 

(i) The subgroup/Co = {k E K : (e x k)ft = ~} is monothetic 

(ii) There exists a topological generator ko E Ko and a flow homomorphism 

0: (ft, a x a) --, (K0, k0) with O(xo,zl)  = e. 

(iii) 0(k~,k~') = 0(~,x') and 0(~,/x') = ~0(x,~') for ~a~ k �9 K, e �9 K0 and 
(x,x') �9 ~. 

(iv) The map ,7: (f~,a x a) ~ (X x Ko,a x ko), r/(z,z') = (z,O(x,z '))  is an 

isomorphism of f~ onto the product t~ow X x Ko. 

Then (X,  a) satisfies condition i of Theorem 2.1. 

We first prove the following 

3.2 CLAIM: There exists a homeomorphism b �9 7"[(X) such that 

1. bzo = z l ,  

2. ab = koba, 

3. bk = kb for a / /k  �9 K, 

4. i f (~ ,~' )  �9 n then b~ = O(~,x')-Ix '. 

Proof'. Since ~/ is 1-1 there exists for each z �9 X a unique point bz �9 X 

for which rl(z , bz) = (z, e). It is easy to check that b is continuous. We have 

T/(Zo, xl)  = (zo, 0(xo, x,))  = (zo, e) hence bxo = z , .  Since for each z �9 X 

o(ax, a b x ) = ( a x ,  O(ax, a b x ) ) = ( a x ,  koO(x,bx)) 

=(ax ,  ko )= (e  • ko)(ax, e ) = ( ,  • ko)V(a~,ba~) 

= ~(az, kobaz) ,  
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we deduce that ab = koba. For all k E K and x E X ,  y ( kx ,  bkx) = (kx, e) and 

kb ) = 0(k , kb )) = = 

Hence bk = kb. 

For the proof of 4. Choose a sequence ni E Z such that lima'** x an*(x0, x l )  = 

(x, x ' )  E fL Then by continuity of b and compactness of K 

x' = lira a n` xl  = lira an' bxo = lira k~' ba n` xo = kbx 

where k = lira k~ i in K.  Also 

(x, O(x, x ' ))  = y(x, z ' )  = y(l im(a" 'zo,  a~ 'x l ) )  = l im(a~'xo,  O(an' xo, a~'x~)) 

= lim(a n' x0, k~' O(Zo, z , ) )  = (x, k) 

and O(z,x') = k. Thus kbx = x'  implies bx = O ( x , z ' ) - x x  ' as claimed. The 

fact that b is onto follows since for every x ~ E X there exists an x E X with 

(x ,x ' )  E f~. Also if bx = b~ then clearly :~ = kx for some k E K and therefore 

bx = b~ = bkx = kbx. Since the action of K is free we have k = e and ~ = z. 

Thus b is a homeomorphism and the proof of Claim 3.2 is complete. | 

Notice that  we actually proved a "local" theorem: For the existence of b E 

7"/(X) with ab = koba and bk = kb Vk E K such that bzo = xl ,  all we need are 

the assumptions on the orbit closure f~ = 5(x0,xl) ,  we don't  use the "global" 

assumption that these conditions hold for every zl E X. 

We now let 

N = {b E T I ( X )  : 3ko E K ,  ab = koba & Vk E K ,  bk = kb} 

3.3 CLAIM: 2~ r is a closed subgroup o f  T I (X)  and [N, N] C K;  in particular N is 

ni lpotent  o f  class 2. 

Proof: Clearly N is closed and K C N. If bi E N with abi = kibia (i = 1, 2) 

then one easily checks that abxb2 = kxk2blb2a and ab-[ 1 = k~'lb'[la, so that N is 

a group. If we let h = [bl, b2] then 

ah = abl b2b~ 1 b~ 1 = kl k2 k~ 1 k~ 1 ha = ha . 

Now every element of N defines an automorphism of the flow (Z, v). In particular 

h as a commutator defines the identity automorphism on Z; hence there exists 
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k E K for which hxo = kxo. Since as we have seen ha = ah this implies h = k 

and [N, N] C K.  Since K is central, N is nilpotent of class 2. | 

By Claim 3.2 the action of N on X is transitive: let F = {7 E N : 7z0 = z0}, 

then the natural  map N / F  ~ X is one to one and continuous. 

In order to complete the proof of Lemma 3.1 we now need to show that  F is 

co-compact in N,  for then it will follow that  this map  is a homeomorphism. This 

will be done in the next Lemma. I 

3.4 LEMMA: Suppose there exists a dosed nilpotent group N C 7"I(X) acting 

transitively on X ,  with a �9 N,  K C N, K central in N and [N, N] C K,  then: 

1. There is a homomorphism f : N ~ Z satisfying the equation 

7r(bx) = f(b)Tr(X) (x �9 X,  b �9 N).  

2. The subgroup F = {3' �9 N : 7x0 = x0} is isomorphic to a subgroup of 

Home(Z, K) .  

3. F is co-compact. 

4. I f  .K, the dual group of K,  is tlnitely generated then F is countable and 

discrete in N and N itself is locally compact and a-compact. 

Proof." 

1. Each element b �9 N,  since it commutes with K ,  defines a homeomorphism 

= F(b) �9 ~ ( Z )  and clearly the map F :  N --* 7-/(Z) is a group homomor- 

phism with K C ker F; in particular [N, N] C ker F.  We have ~ = F(a) = 7" 

and for each b �9 N 

7"b = fib = ab = F([a, blba) = ~,a = ~r . 

Thus each b is an automorphism of the flow (Z, r )  and is therefore a trans- 

lation of Z by the element b(z0) = Zb. We write Zb = f(b) and f : N ~ Z 

is then a group homomorphism satisfying 

 (bx) = (x �9 X, b �9 N ) .  

2. Since for 3' E F, q(z0) = f (7 )  = z0 we have ~(z) = z for every z E Z. 

Thus for every x E X,  7r(Tz ) = 7r(z) and we conclude that  there exists a 

continuous map "~ : X ~ K with 7x = Zy(x)z. For k E K, x E X we have 
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~(kx)kx = 3,kx = k3,x = k~r(x)z. Hence ~(kx) = ~(x) and ~ is defined on 

X / K  = Z. Also 

3, ( -~)  = ~ ( a x ) a ~  

= [3', ala3,~ = [3', ala'~(~)~ = k , q ( x ) a x  

where we put  [7, a] = k v �9 Z .  Hence Zy(az) = k~q(z) and for every n �9 Z 

also ~ ( , - ~ )  = k~q(x ) ,  o n  z we have  

n ~(~(a"~)) = ~ ( ~ ( ~ " ~ 0 ) ~ ( ~ ) )  = ~r(~"~(~))  = kv ~(~(~)) 
= ~(~-)~(~x). 

By continuity we get ~(zz') = ~(z)~(z') for all z,z '  �9 Z, and ~ is a contin- 

uous homomorphism. For 3,1,72 �9 r we have 

3,~3,~ (z) = 3,7~ (z)z = 3,~ (7~ (z)z)  = 7~(')7~ (z)z  

so that 3,23,~"~ = "Y2" ~1. Similarly 3, -1 = .~-1 and 3, ~ 7 is a homomorphism 

of P into I-Iomr K).  Finally it is clear that ~ _= e iff 3' = e. 

3. Since K is central P K  is a normal closed subgroup of N. The natural 

map A : N / F K  ----* Z is a continuous 1 - 1 group homomorphism of the 

Polish group N / F K  onto the compact group Z. By a famous theorem of 

Souslin A-1 is a Borel isomorphism and by a theorem of Banach the Borel 

homomorphism A-1 is continuous. Thus A is a homeomorphism and it now 

follows easily that also A* : N/P ~ X ,  defined by A*(gF) = gzo, (g �9 N), 

is a homeomorphism as well. In particular F is co-compact. This completes 

the proof of Lemma 3.1. 

4. Since Home(Z, K)  is isomorphic to Hom~(R, 2). It follows that when /~  is 

finitely generated Home(Z, K),  and therefore also F, is a countable group. 

Since r is closed it must be discrete. The rest is now clear. | 

3.5 Remark: The construction in Lemma 3.4, can be reversed; suppose "~ �9 

Home(Z, K)  is given then we can define 3' �9 ? / (X) by 3,(x) = ZfOrx)x. We then 

have for each k �9 K 

(i) 3'(kx) = 5 ( ~ k x ) ) k ~  = ; r ( ~ ) k ~  = k:r(~x)~ = k3'x 

and also f o r b E N ,  x E X  

3,bz = :r(~bz)bz = ~(I(b))~(~z)bx 

= ~ ( f ( b ) ) ~ ( ~ ) x  = ~(f(b))b3"~ 
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so that 

(ii) [7, b] = ~(f(b))  �9 K . 

As a result of (i) and (ii) if we let F be the group of all 7 �9 ~/(X) obtained in this 

way then f' D F, F ~ Home(Z, K)  and the closed group N generated by F and 

N is nilpotent of class 2, with [N, N] C K,  and it acts transitively on X. Thus 

when convenient we can replace N by ~r and assume that  I" --- Home(Z, K).  

w The Enveloping Group of  a Nil-Flow of  Class 2 

In this section we prove Theorem 2.2 which then yields the implication i =~ 2 in 

Theorem 2.1. 

We assume our flow (X, a) satisfies condition i of Theorem 2.1. 

4.1 PROPOSITION: 

1. Given p �9 E des ~ = limboS', where {nk} is a net in Z such that 

hm a"* = p in E .  Then the limit ~ exists and is independent of the choice 

of  the net {nk}. 

2. The map p ~ ~o P is a homomorph/sm o f ( E , a )  onto (q~,~00). 

3. For every g �9 N and p E E 

pgr  = ~(g)gpr 

4. E acts on E by 

where ~o = ~o~ . 

p(hr ,  r = (phr,  ~0Pr ((hr, r �9 $, p �9 E) 

and the map j : p ~-* p(F, e) = (pF, ~ooP), j : (E, a) --* (E, a) where 5 = 

a x ~Oo, is a flow isomorphism. 

5. I fp  e E and j (p )  = (pr,~0 p) = (hr ,  r then for every 7 �9 F, hr = ~(7)Thr.  

Proof." 

1. G i v e n g E N  

a"'gr = [a"',g]ga"~F = ~o(g)"'ga"'r.  

By compactness, the existence of the limits lim a "~ gF = pgF and lim ga "h P 

= gpF implies the existence of lim ~0(g) "* = ~(g), and this limit depends 

only on p. We also have now pgF = ~o(g)gpF as claimed in 3. 
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2. This is clear. For 4 we have 

j(ap) = ap(r, e) "P = (ap t ,  ~'o ) = (ap t ,  ~ o ~ )  

= (a • ~0)(pr,~0 ~) = aj(p),  

so that  j is a homomorphism. If j(p) = j(q) then pr = qr  and ~0 p = ~ .  

Hence for every g E N by 3, 

pgr  = ~ ( g ) g p r  = ~ ( g ) g q r  = qgr  ; 

this means p = q and j is an isomorphism. 

5. This is a special case of 3. When g = 7 E r ,  h r  = p r  = pTr = r = 

r . 

Proof of  Theorem 2.2: It is now clear that E is also the enveloping group of the 

flow ($ ,  a) and if for p, q e E, j(p) = (pF, ~0 v) = (gr,  ~) and j(q) = (qF, ~0 q) = 

(hr, r then 

j (pq)  = p j (q)  = p(hr, r = (phr ,  ~r = ( ~ ( h ) h g r ,  ~r  

This yields the formula for the product in E. 

Given (hr ,  r  e E there exists p E E for which p(hr ,  r = (r ,  e). If j(p) = 

(g r ,~ )  then (gr,  ~ ) ( h r , r  = (~(h)hgr,  ~r = (r ,  e) hence ~ = r  and r = 

~ ( h ) h g r .  This implies gr = ~(h)-~h-lr  = r  and we get (hr,r  -1 = 
( r 1 6 2  -1) as required. | 

i =~ 2: We now have an explicit description of the enveloping group E of (X, a) 

and it is an easy matter  to check that  it is nilpotent of class 2. First we observe 

that  K is embedded in E as a compact central subgroup: 

{(kr, e) : k G K } .  

Next observe that for (gr,  ~), (hr ,  r  e 

[(gr, so), (hr, r = (gr, ~)(hr, r ~-l)(r  r 

= ( ~ ( h ) h g r ,  ~ r 1 6 2  ~-1r 

= (~(h)r -1)[h, g]r, e) 

and [E, E] C K.  | 
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w P r o o f s  o f  I m p l i c a t i o n s  2 =~ 3 =~ 4 and  4" =~ 

=~ 3: The map p : p ~ ~rpzo from E onto Z is a group homomorphism and 

since Z is commutative we have p(r) = 7rrz0 = ~rz0 = z0 for every r e [E, E]. 

Thus for such r there exists a k E K with rz0 = kxo. Let p E E; then since 

[E, E] is central rpzo = prxo = pkxo = kpxo. Since Ezo  = X we conclude that 

as elements of X x ,  r = k. Thus [E, E] and therefore also L = closure [E, E], are 

subgroups of K N E.  L is a compact group of automorphisms of the flow (E, a), 

and E l L  is a factor flow of E.  Since E l L  is clearly its own enveloping group 

and since it is commutative we deduce that E l L  is almost periodic ([.4]). It now 

follows that  E ~ C L C K.  If now k E K then ~rzo = r k z o  and therefore there 

exists q E E ~ with kx0 = qz0. Since E ~ C K this yields k = q and also K C E ~. 

| 

=~ 4: Since E ~ = K and since the action of K as a subgroup of E on ~ C X • X 

is the diagonal action, we conclude that the quotient map ~ - -~  f~/A/~ = Z1 is 

the largest almost periodic factor of ~. | 

Assume now that  condition 4 of Theorem 1 holds. Fix zl  E X and let fl = 

5(z0, z l ) .  Put  
L = {(k,k ')  �9 g x K :  (k x k ' )~ = ~}, 

K0 = {k e K :  (e x k)fl = ~ ) .  

By assumption ~ is AK invariant and the quotient map ~ ~rl f l /A K  = Z1 is 

the largest almost periodic factor of ~. It is now clear (identifying k with e x k 

(k E K0)), that K0 acts freely on Z1 and that Z1/Ko ~- Z ~- f l /L .  Since Zt is 

almost periodic and K0 is a group of automorphisms, it follows that K0 can be 

identified with a subgroup of Z1, and we have the following short exact sequence 

of compact abelian metrizable groups 

1---~ Ko--* Z1--* Z--* I .  

Assume for the moment that this exact sequence splits; i.e. assume Z1 = K0 @ Z. 

Thus our assumptions now are those of 4 together with the assumption that for 

every xl E X,  Z1 = K0 @ Z. We will refer to this as condition J,* and will now 

prove: 

~,* =~ i Since K0 is now a factor of Z1 it follows that K0 is monothetic and we 

will let k0 be the image in K0 of ~'1 the generator of Zt. This gives condition (i) 
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of Lemma 3.1. For condition (ii) we put e = 7rK0 o7rl where f~ ~1 ~-~/AK ---- Z l  is 

the quotient map and Z1 ~ K0 is the projection of Z1 onto K0. The conditions 

(iii) are clearly satisfied. Finally we check condition (iv). If T/(x, z ')  = T/(~, ~ ') for 

(x, z'), (.~, ~ ') e fl then z = ~ and O(x, x') = O(x, ~ '). We have ~ '  = kx' for some 

k e / t o  and it follows that O(x, x') = O(x, kx') = kO(x, x'), and necessarily k = e. 

This proves that 7/is 1-1. Given x E X we choose x' E X such that (z, x') E 

and then also (z, kx') �9 fl for each k �9 K0. Thus ~?(x, kz')  = (x,O(x, kx')) = 
(x, kO(x, x')) and we conclude that {x} • K0 C ~(fl). This proves that T/is also 

onto and thus all the conditions of Lemma 3.1 are satisfied. By this lemma (X, a) 

satisfies 1 and our proof of ~,* =~ ]. is complete. | 

w Implication ,~ =~ i 

We now go back to assumption 4 and consider the monothetic compact metrizable 

group Z = X / K .  By identifying its dual group ,~ with the set of eigenvalues of 

the flow (Z, r),  we realize 2 as a countable subgroup of the circle {$ e C :  l$[ = 

1} = C. Put  

2 * = { ) ~ e C : 3 n e Z  suchtha t  ~ " e 2 } .  

Then 2 * is a divisible subgroup of C. We consider 2 * as a discrete group and 

let Z* be its compact monothetic metrizable dual group, with identity element 

z~ and canonical generator (the identity map of 2 "  into C) r*. The inclusion 

2 ~ 2 *  induces a homomorphism (of groups and flows) (Z*, r*) r (Z, r). 

Denote W = ker( ,  then as a flow (Z*,r*)  is a W-extension of (Z,r) .  Since Z 

is the largest almost periodic factor of X,  in the following diagram of minimal 

flOWS 

(X,a)  (Z*,r*)  

X and Z* are relatively disjoint, i.e. the subset X* = {(x, z) E X x Z* : ~(x) = 

((z)} of X x Z* is minimal under a x r*. We denote a* = a x r* and x~ = (x0, z~), 

and let X* �9 '~~ Z* be the projection of X* on the second coordinate. Then clearly 

Z* is the largest almost periodic factor of X*. 
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6.1 CLAIM: CondltJoa 4" JS satisfied by (X*,a*). 

Proof." We identify K with the group {k x e : k E K} which acts freely on X* 

by (k x e)(x,z) = (kx, z) ((x,z) E X*). Let (xl ,zl)  be a point in X* and let 

a* = 6((xo,z;), (xt ,z ,))  in X* x X*. When (Y,T) is a minimal flow we denote 

by Q(Y, T) = Q(Y) its regionally proximal relation. A well known theorem states 

that 

Q(Y) = R~ = {(y,y') e r x Y:  ~(y) = ~(y')} 

where Y ~ * Y1 is the largest almost periodic factor. Also if Y ~ Y~ is a 

homomorphism then A x A(Q(Y)) = Q(Y2), (see e.g. [E]). 

Now let ( (x ' ,x* ' ) , (s163 = ( ( (x ,z ) , (x ' z ' ) ) , ( ( s163163 e Q(n*); then 

((x,x'), (~,s E Q(~) and by condition 4 on X we have (~, ~') = (kx, kx') 

for some k E K. Also ((z,z'),(~.,Y.')) E Q(Tr* x ~r*(a*)), and since Z* is 

almost periodic we have ~ = z and ~.' = z'. Thus ((x*,x*'),(~',~*')) = 

(((x,z),(x',z')),((kx, z),(kx',z'))) = ((x*,x"),(kx',kx")) and Q(a*) C i.)~e K 
graph (k x k). Conversely let k E K and let ((z, z), (x', z')) E f~*, then by 

which we assume holds for (X, a), ((x, x'), (kx, kx')) e Q(f~). It now follows from 

the definition of the regionally proximal relation that 

( ( (x ,z ) , (x ' , : ' ) ) , ( (kx ,  z), (kx', :'))) e Q(a*).  

Thus 

and if we let fl* 

factor then 

Q(a*)= U graph(kxk) 
kEK 

~; } Z~ be the homomorphism of f~* on its largest almost periodic 

O(a ' )  = n . ;  = {(w, w') e a" x n ' :  = z; n*/"K 

and 4 is satisfied by (X*, a*). Since the action of K on X* is via the X coordinate 

it is clear that also K0 = {k E K : (e x k)f~* = f~*} and that K0 can be identified 

with a subgroup of Z~ so that Z~/Ko ~ Z*. Describing this quotient as a short 

exact sequence and passing to the duals we have 

1 ~ Ko -'+ Z~ ~ Z* ' 1 

and 
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However Z* being a divisible subgroup of the circle C it is also a divisible 

subgroup of Z~* and this sequence splits so that Z~* = Z* (9/(0 and therefore 

also Z~' = Z* (9 K0, proving condition 4" for (X*, a*). (See e.g. [H-R].) | 

Since we already have 4" =~ [ we conclude that (X*,a*) is a nil-flow of the 
form N*/F* where N* is a nilpotent subgroup of ~(X*) acting transitively on 

X*, K C N*, a* �9 N*, [N*,N*] C K and r* is the closed co-compact subgroup 

which fixes z; = (xo, z~). 

We have the commutative diagram 

(x', . ')  
,/ ",,,,,- 

(x , . )  (z ' , , - ' )  
. \  /r 

(z,r) 

where p is the projection of X ~ onto its first coordinate. We recall that ~ is 

a group homomorphism with W = ker~. W acts on ( X ' , a  *) as a group of 

automorphisms where for w �9 W, (z, z) �9 X*, 

w(x ,  z) = wz )  . 

Let N be the subgroup of ~(X*)  generated by W and N*. 

6.2 CLAIM: fi~ iS ni lpotent  o f  class 2, K is central in fiT, [N,N] C K ,  and 

denot ing r = r* we have X*  = 1 v / r .  

Proof.- Let b �9 N* and w �9 W, then for h = [w, b] we have 

a*h = a * w b w - l b  -1 = w a * b w - l b  -1 = wkba * w - l b  -1 

= k w b w - l k - X b - l a  * = ha* 

where k = [a*, b] �9 K. Thus h is an automorphism of (X*, a*). Since clearly 

the action of K and W commute, h induces also an automorphism of (Z*, r*) 

and being a commutator this latter automorphism is the identity. In particular 

hz~ = kz~ for some k �9 K and being both automorphisms of X*, this implies 

h = k. Thus [w, b] �9 K and it follows that IN, N] C K and that N is nilpotent 

of class 2. Clearly now X* = N/F .  | 
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Since (X, a) is isomorphic to the flow (W\I~/F,  a*) this completes the proof 

of Theorem 2.1". Let C(W) = {b �9 IV : bw = wb, Vw �9 W) be the centralizer of 

W in -~. Clearly W, K and a are in C(W). 

6.3 CLAIM: C(W) acts transitively on X*. 

Proof: For b �9 N the map ~0b : g ~ [b, g] of .~  into K is a group homomorphism. 

Let X = ~ob [ W, then X �9 Homr and since K is a torus there exists 

"~ �9 Home(Z*, K)  with ~/I W = X- As was remarked in Section 3 we cart assume 

that the element 7 �9 7-/(X*), defined by 7x* = .~(~r*(z*))z* (x* �9 X*), is in F. 

Let bt = b7 -1 then for w �9 W and z* �9 X*, 

However, [b,, w] = [h -1, w] = [b, w]b -1, w] = , , (x)~ -1(~). 
Now 

= ~(~,)~(~*~')x* = ~(w)wT~'. 

Henc.e "~(w) = [7,w] = ~0b(w) so that [b,,w] = ~b(w)z/-'(w) = e and b, �9 C(W). 

Since K C C(W) it is now clear that C(W) acts transitively on X*. I 

It follows that (X*,a*) is  isomorphic to the nil-flow ( C( W) / F  N C(W),a*). 

Let g = C(W)/W,  F = (F N C ( W ) ) W / W  then clearly (X, a) is isomorphic to 

the nil-flow (N/r, a*) and the implication 3, =~ i is proved. | 

This also completes the proof of Theorem 2.1. | 

Notice that Claim 6.3 is the only place in our proof of Theorem 2.1 where we 

used the assumption that K is a torus. The following example will demonstrate 

the need for passing from the representation X* = N / F  to the representation 

X* = C(W) /F  fl C(W) in the proof of the implication 3, =~ i. 

6.4 Example: Let N = {(n, z, y) : n �9 Z, z, y E T) with multiplication 

(n,z,y) (n',z',y')= (~+~' ,  ~+z' ,  y+y'+nz ' ) .  

N is a nilpotent group with [N,N] C K where K = {(0,0,y) : y e T} is its 

center. Let a = (2, a,  0) where a e T is irrational, and let r = {(~, 0, 0) :  n e z }  

The nil-flow ( N / r ,  a) is isomorphic to the minimal flow (T 2, T) where 

T(z,y)  = (z + a, y + 2 z )  ((z,y) e T2) . 
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Let now W = {(0,0,0), (0, ],0)} C N. Then W is a compact commutative 

subgroup of N with W N K = {e}, and for w = (0, 1 0 ~, ) we have aw = wa. 

Thus W defines a group of automorphisms of (N/F,  a). However the group 

W is not normalized by r ,  w r  is not a subgroup of N, and the quotient flow 

( W \ N / F ,  a) = (X, a) is not isomorphic to the nil-flow (N /H,  a) where H is the 

group generated by W and r .  However, if we consider the subgroup C(W) = 

{(2n, z, y) :  n �9 Z, z, y �9 T} of N and C(W)N F = {(2n, 0, 0 ) : n  �9 Z} of r then 

(c(W)/C(W) n r ,a)  ~ (g/r,a) and (X,a) = (W\N/r,a) is isomorphic to the 
nil-flow ( C ( W ) / W / ( C ( W )  fl F)W/W,  a) and by way of the map ~ :  (2n, z, y) 

(n, 2z, y) from C(W) onto N we have: 

(2n, z,y) --~ (2n+2,  z + a ,  y + z )  

(.,  2., ~) - L  ~ ( .  + 1, 2~ + 2~,, y + 2~) 

where b = (1, 2a, 0). Thus (X, a) is also isomorphic to the nil-flow (N/F, b) and 

to the flow (T 2, .5') where S(z, y) -- (z + 2a, y + z), ((z, y) e T2). $ 

6.5 Example: Again let N and P be as in the previous example. Now, however, 

we take a = (0, a,/~) where 1, a and/~ are independent over Q. Our flow (X, a) = 

(iv/r ,  a) is now isomorphic to the flow (T ~, T) where T(z, y) = (z + a, y + 

/~), ((z, y) �9 T2), and is therefore almost periodic, so that K = {e}. However 

[N,N] = {(0,0, y):  y �9 T} r K. 

w A P r o o f  of  T h e o r e m  2.3 

Suppose first that ~(z) = nz + fl for n > 0 and fl E T. Then the flow (X, a) can 

be represented as a nil-flow in the following way. Take {(1. } 
N =  0 1 : q E Z g ,  z E T  , 

0 0 

F =  1 : q E Z  , a =  I 
0 0 
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Then (X, a) is isomorphic to the nil-flow (N / r ,  a). 
Conversely let X -- T • C with a(z,y) = (z q- a, y.~p(z)) (z E T, y E C), 

where a E T is irrational. We assume (X, a) is minimal and that the projection 

(X, a) , r  (T, a) is the largest almost periodic factor of (X, a). Each k E C = K 

defines an automorphism k(z, y) = (z, ylr of (X, a) and we consider C = g as a 

subgroup of ~ (X) .  Now assume there exists a nilpotent group N C 7-/(X) acting 

transitively on X with a E N, K C N, K central in N and IN, N] C K.  We let 

r = {7 E N :  7(0,1) = (0,1)}. Then (N/F,  a) is isomorphic to (X, a). 

Since each b E N induces a rotation fl on T we can describe b as a pair (fl, ub) 

where us : T ~ C is continuous and b(z, y) = (z -t- fl, u~(z)y). (Incidentally, we 

h a v e  

ba(z,y)  = b(~ + ~, y~(~)) = (~ + ~ + ~, ~(Z)~b(Z + ~)) 

and 

ab(~, y) = (~ + ,  + ~, y=b(Z)V(z + ~)) �9 

Hence by assumption there exists Ab E C such that 

~(z  + fl) = ~b,,~(z + ,~) 
(Lesigne's equation) ~ ~(~) ~(~) 

Also for bi -- (fl~,Ub,) E N (i = 1,2) 

b2bl(z, p) = b2 (z -k ill, yub~(z)) = (z -t- ~1 A- f12, yUb~(Z)Ub~(z -t- ~1)) 

= (z + ~ + ~ ,  y ~ b , ( Z ) ) .  

Hence ~'b~b,(~) = u ~ ( z  + ~)u~, (~) .  

Let D be the subgroup of N consisting of those d = (6, u~) for which the 

rotation number of ud is zero. Clearly D is a closed normal subgroup of N 

containing K. If dl(6,ud~) and d2 = (~,ud~) (same 6) then d~ldl = (0,U~dl) 

and for some k E K d~'ldlk(0,1) = (0,1) i.e. d~ldlk  E r .  However for 7 E r we 

have 7 = (0, u.~) -- (0, ~) where ~ :  T --* K is a character of T i.e. "~(z) = e 2~inz 

for some n E 7.. Since d~ldlk  is in D it follows that n = 0 and that  d~ldlk  = e 

or d2 = dl k. 

Thus the map f :  D --, T given by f((6, u + d)) = f (d)  = 6 is a homomorphism 

with kery = K. The map d ~ d(0,0) = (6,Ud(0)) of D into T x K is therefore 

I-I and onto (in particular D is compact) and D is isomorphic to T x K. We 

can find therefore a subgroup Do C D such that f : Do ~ T is an isomorphism. 



Vol. 81, 1 9 9 3  NIL-TRANSFORMATIONS OF CLASS TWO 49 

We denote the unique d E Do with f(d) = z by dz = (z, uz). Define a map 

J : T x g --* T x g by J(z, y) = (z, yu~(O)). Then J is a homeomorphism of 

T x g onto itself and J - l ( z , y )  = (z, yu~(O)-l). Now for some n # 0 dega = n 

(otherwise a E D which is compact and our flow would be almost periodic) and 

for 7 = (0,~n) we have deg(a7 -~) = 0 i.e. a7 -~ E D. Thus for some k0 E K,  

aT-~k0 �9 Do and since f(a-r-lk0) = ~ we must have a-r-~ko = ( ~ , ~ ) .  On one 

hand 

and on the other 

k0a7-~(z,y) = (,~,uo)Cz, y) = (z + a,  yuo(z)). 

Therefore ua(z) = ko~(z)e -2~inz. Now 

s - ' a s ( ~ , y )  = (z + ~, y ~ ( 0 ) ~ ( z ) ~ . + . ( 0 ) - ' )  

= (z + ~, y ~ ( z ) - ' ~ ( z ) )  

= (~ + . ,  yko~V(z ) - lv (z ) .  ~ ' )  

= (z + . ,  y k o ~  ~''"') , 

s o  that denoting u.(0) = r  we have 

~(z)  = kol.2"in~r + ~)r  -1 I 

w The General  Ni l -Flow of  Class 2 

So far we considered nil-flows of the form (X, a) = (N/r ,  a) where N C 7"/(X) 

is a nilpotent group of class two, for which [N, N] C K,  K a compact group of 

automorphisms of (X, a) central in N, such that (Z, r)  = (X /K ,  a) is the largest 

almost periodic factor of (X, a). Example 6.5 is an example of a nil-flow of class 

2 for which the condition IN, N] C K is not satisfied. In this section we will 

show how the general case can be represented as a nil-flow of class two for a, 

possibly different, nilpotent group for which the condition IN, N] C K does hold 

(Theorem 2.4). We will then deduce Theorem 2.5. In this section, therefore, our 

assumptions on the minimal metric flow (X, a) are as follows. There exists a 

closed subgroup N C ~ ( X )  acting transitively on X with a E N, and [N, N] is 

central in N. We choose x0 E X and let 

F = {7 6 N :  7x0 = z0} ,  H = closure [ g , g ] .  
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8.1 PROPOSITION: 

1. H is compact. 

2. There exists a compact subgroup g C H such that (X /K,  a) = (Z, ~') is 

the largest almost periodic factor of (X, a). 

Proof'. 

1. Let M = closure HF, then/~ is a closed subgroup of N centralizing r ,  and 

the quotient group ltTl = M/F is compact. The group h:/ acts on (X, a) 

(on the right) as a group of automorphisms, and the flow (X/J(/I, a), clearly 

isomorphic to (N/M, a), is almost periodic. We have therefore the following 

commutative diagram 

(g/r,a) 

(z,r) 

/ 

(N/M,a) 

where (Z, T) is the largest almost periodic factor of (X, a) and ~ is an/t~/- 

extension. Now if h E H then both h and h its image in ~I = M/F are 

automorphisms of the minimal flow (X, a) and since hzo = hxo we conclude 

that as elements of 7/(X), h --- h. Since the image of H in M is dense we 

conclude that H is compact and as a subgroup of ~ ( X )  coincides with A~/'. 

2. In the commutative diagram above Ir defines a compact subgroup K of 

= H such that Z = X / K .  | 

Proof of Theorem 2.4: Statements 1 and 2 are proved in Proposition 8.1. To 

prove 3 consider the action of N1 = N / K  on Z = X / K .  This action need not 

be effective. Let F1 = {7 6 F : 7  acts as the identity on Z}. Then F1 is a 

normal subgroup of N and hence PIK is a closed normal subgroup of N1. Let 

N2 = N/F1K; then N~ acts transitively and effectively on Z. Now by assumption 

r, the image of a in N2, acts on Z in an almost periodic way i.e. equicontinuously. 

Hence the subgroup T = closure {r" : n 6 Z} is a compact subgroup of N2 acting 

transitively on Z. Let C(r) be the centralizes of r in N2 and let 

No = {g e N :  grlK e c ( r ) } .  
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Then T C C(~'), and a and H are in No. Clearly No acts transitively on X and 

if gl,g2 E No then [g1,92] G F1K n [N,N] = K. Thus [N0,No] C K and for 

r0 = r n No we have (N0/r0,  a) ~ (X, a) as required. | 

Proof of Theorem 2.5: By Theorem 2.4 we need consider only the case where 

(X, a) satisfies the equivalent conditions of Theorem 2.1". Now condition 2 (or 

3) of this Theorem is clearly hereditary. | 

We conclude with some problems which are left open 

1. Does Theorem 2.1 hold even without the additional assumption on K?  

2. In Theorem 2.1 condition ~,, if we require only that f~ is isomorphic to a 

minimal subset of X x Z1 where Z1 is the largest almost periodic factor of f/ 

(without specifying the nature of fl ~ .~ Z,), do we still have an equivalent 

condition? 

3. Which parts of this theory can be generalized to nil-flows of class 3, or rt? 

[A] 

[E] 

IF,l] 
IF,2] 

[H-R] 

ILl 

[N] 

[P] 
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